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A short wavelength approximation of a boundary integral operator for two-dimensional isotropic and ho-
mogeneous elastic bodies is derived from first principles starting from the Navier-Cauchy equation. Trace
formulas for elastodynamics are deduced connecting the eigenfrequency spectrum of an elastic body to the set
of periodic rays where mode conversion enters as a dynamical feature.
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I. INTRODUCTION

Predicting energy flow within complex structures in me-
chanical wave problems poses an enormous challenge to a
wide variety of physical and engineering applications such as
the transfer of sound �1,2�, signal transfer along the ocean
sound channel in underwater acoustics �3�, the distribution of
vibrational energy in large buildup structures such as cars or
airoplanes �4�, or the expansion of seismic waves in earth
�5,6�. A common theme emerged in these research areas in
the past decade or so linking the complexity of the wave
fields to the chaotic nature of an underlying ray dynamics. It
has become clear that the fluctuations in wave functions or
eigenspectra of such wave chaotic systems can be accurately
modeled by the statistics obtained from random matrix
theory �7,8�. Likewise, a ray approach describing wave fields
in terms of waves traveling along classical rays is turning
into a powerful tool to implement dynamical features into a
wave transport theory. Wave interference effects along clas-
sically chaotic rays lead to intricate effects such as time-
reversal imaging �1� or the signal enhancement due to coher-
ent backscattering �2,6�. Furthermore, the Green function of
a complex wave system can be reconstructed from the cor-
relations in the diffusive wave field of that system �9�. This
has recently been applied to the late diffusive signal of earth-
quake measurements containing coherent information about
the elastic response of the upper earth crust �10�.

Such wave chaos concepts have been pursued in some
detail in quantum theory �11–13�. A powerful tool connecting
the spectrum of a quantum system with an underlying clas-
sical dynamics is semiclassical expressions for the Green
function and its trace as given by Gutzwiller in the 1970s
�11�. Mechanical wave problems described by scalar wave
functions such as in acoustics or describing membrane vibra-
tions can be written in terms of a semiclassical expression
derived in a quantum context. The situation changes drasti-
cally when considering linear wave theory in elasticity start-
ing from the biharmonic equation describing bending modes
in plates and the Navier-Cauchy equation modeling bulk de-
formations in elastic, isotropic bodies to shell theories or
elastic waves in anisotropic media. New features enter the
underlying ray dynamics due to the vectorial nature of the
wave equations and the coupling between different wave
modes �such as shear and pressure waves in solids�. Vital

prerequisites for an emerging wave chaos theory for me-
chanical wave equations are solid foundations on which to
build transport theories driven by an underlying chaotic ray
dynamics, which are, however, in large parts still missing.

We note that the governing equations of isotropic elastic-
ity, the Navier-Cauchy equations, are separable only for a
very small set of geometries such as spherical bodies or in-
finitely long cylindrical waveguides. Solutions to the vast
majorities of shapes including rectangular bodies can be ob-
tained only with the help of numerical techniques such as
finite element or boundary integral methods �14,15�. Purely
numerical approaches are, however, severely limited by com-
puter resources and often restricted to the low frequency re-
gime with wavelengths only one or two orders of magnitude
smaller than the typical size of the system. In the high fre-
quency limit statistical methods such as statistical energy
analysis �4� or random matrix theory �7� have proved valu-
able. While the former yields information about mean re-
sponse signals neglecting interference effects, the latter pro-
vide answers regarding the universal part of the fluctuations
in the signal not taking into account system dependent ef-
fects. Semiclassical methods offer a further alternative pro-
viding detailed information about the geometry of the prob-
lem and may prove to become an important tool in the mid to
high frequency regime in which the treatment of the vibra-
tional response of large buildup structures still poses enor-
mous problems �16�.

The need for providing foundations of such an emerging
asymptotic theory in elastic wave problems prompted the
work presented in this paper. Here, we derive a semiclassical
expression for a boundary integral kernel for isotropic and
homogeneous elastic bodies of arbitrary shape in two dimen-
sions. From the boundary kernel, semiclassical expressions
for the Green function or its trace can be deduced, a method
pioneered by Bogomolny �17� in the scalar case; see also
Refs. �18–20�. A trace formula for the interior problem in
elasticity has been presented first in Ref. �21�; the result was
obtained by way of comparison with the scalar Helmholtz
equation and not derived from the governing equations. The
general form of such a boundary integral operator �also
called transfer operator� for elastic problems has been postu-
lated in Ref. �22� and verified for the special case of a circu-
lar waveguide. A derivation of the transfer operator for the
biharmonic equation describing the out-of-plane vibrations
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of plates has been obtained in Ref. �23� incorporating the
coupling of flexural and boundary modes. In the short wave-
length limit, the wave equation reduces again to a scalar
problem with modified boundary conditions due to the expo-
nential suppression of surface waves away from the bound-
ary.

II. TRANSFER OPERATOR

A. Fundamental equations

We consider isotropic and homogeneous elastic bodies de-
scribed in the frequency domain by the Navier-Cauchy equa-
tion �24�

��u + �� + �� � �� · u� + ��2u = 0, �1�

where u�r� is the displacement field, �, � are the material-
dependent Lamé coefficients, and � is the density, which we
assume to be constant. We will consider free boundary con-
ditions here; that is, no forces act normal to the boundary;
this can be expressed in terms of the traction t�u�; that is,

t�u� = n̂ · ��u� = 0, �2�

where n̂ is the normal at r on the boundary C of the elastic
body; the stress tensor ��u� is given as

��u� = ��� · u�1 + ��� � u + u � �� . �3�

We make the standard Helmholtz decomposition of the dis-
placement field u; that is,

u = up + us with up = ��, us = � � � . �4�

The elastic potentials � for the pressure �or longitudinal� and
� for the shear �or transversal� wave component solve
Helmholtz’s equation

�� + kp
2�� = 0,

�� + ks
2�� = 0, �5�

with wave numbers kp and ks, respectively. One finds the
dispersion relation kp,s=� /cp,s with wave velocities

cp =�� + 2�

�
, cs =��

�
. �6�

In the following, we shall restrict ourselves to two-
dimensional problems; that is, r ,u�r��R2 and we set �
= �0,0 ,	�t. The resulting differential equations describe in-
plane deformations in plates or wave propagation in bodies
with fixed shape in the xy plane extending to ±
 along z.

B. Boundary integral equations

1. General setup

In what follows, we will adapt the method outlined in
Refs. �17,23� to the Navier-Cauchy Eq. �1�. We first rewrite
the boundary conditions �2� in terms of boundary integral
equations and then consider the Fourier coefficients of the
boundary integral functions. We start by introducing the elas-
tic potentials in the form

��r� = �
C

G�r,�;kp�g���d� , �7�

	�r� = �
C

G�r,�;ks�h���d� , �8�

where g and h are yet unknown single-layer distributions on
the boundary and �� �0,LC� parametrizes the boundary of
length LC; that is, r����C; furthermore, G�r ,r� ;k� is a
Green function solving the inhomogeneous Helmholtz equa-
tion

�� + k2�G�r,r�;k� = ��r − r�� .

The integrals converge for r inside C and nonsingular layer
distributions g and h, and the ansatz �7� and �8� thus solves
the Helmholtz equation in the interior. A convenient choice
for G�r ,r� ;k� is the free Green function, which in two di-
mensions takes the form

G�r,r�,k� =
1

4i
H0

�1��k�r − r��� , �9�

where H0
�1� is the zeroth-order Hankel function.

In a next step, it is useful to rewrite the boundary condi-
tion �2� in terms of the elastic potentials. Defining n̂ and t̂ as
the �outward� normal and tangent vectors at the boundary
point r�
��C as indicated in Fig. 1�a�, one obtains

n̂ · � = − �n̂kp
2� + 2��n̂

�2

�n2� + t̂
�2

�n�t
� + n̂

�2

�n�t
	

+ t̂
1

2
	 �2

�t2 −
�2

�n2
	� = 0, �10�

where we used ��=−kp
2� valid in the interior; note that all

partial derivatives are understood as being taken in the inte-
rior �after a suitable continuation of the local coordinates
system into the interior� and then taking the limit r→r�
�
�C.

We thus need to determine derivatives of the form

�nn�
C

G�
,��f���d� ,

FIG. 1. �Color online� Coordinates on the boundary: �a� Position
representation with path of length L from r���� to r�
� �here for an
initial pressure wave�; �b� momentum representation with shear and
pressure path starting with tangential momentum p� and ending
with momentum p on the boundary.
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�nt�
C

G�
,��f���d� ,

�tt�
C

G�
,��f���d� , �11�

with G�
 ,���G�r�
� ,r���� ,k�, f stands for g or h, respec-
tively, and the derivatives are always taken with respect to
the first variable r�
� from the interior. Note that taking the
limit r→r�
� and differentiating are noncommuting opera-
tions due to the logarithmic singularity of the Green function
for 
→�.

For a short wavelength analysis, we distinguish between
long segments with k�r�
�−r������1 and short contribu-
tions with k�r�
�−r�����=O�1�; for the former, one can em-
ploy the asymptotic form of the Green function

G�r,r�,k� 

1

4i
� 2

�k�r − r��
ei�k�r−r��−�/4�, k�r − r�� → 
 ,

�12�

whereas the logarithmic singularity G�r ,r� ,k�
 1
2� ln�k�r

−r��� for k�r−r��→0 calls for a separate treatment for short
length contributions. We note, in particular, that one obtains
from Eq. �12� in leading order,

�nG�
,�� 
 iqG�
,��, �tG�
,�� 
 ipG�
,�� , �13�

and likewise for the second-order derivatives. Here, q�
 ,��
=k cos �0 and p�
 ,��=k sin �0 are the normal and tangential
component of the wave vector k=k�r�
�−r����� / �r�
�
−r����� at the boundary point 
 �see Fig. 1�a��.

2. Asymptotic form of the boundary integral kernel
in momentum representation

Following Ref. �23�, we split the boundary integral into
two parts; that is,

�
C

d� = �
C/�

d� + �
�

d� ,

where � refers to a small interval around �=
 scaling as
�
k−1+� with 0���1.

We deal with the short length contributions first. Due to
the scaling chosen for the interval �, we can neglect curva-
ture contributions in the large k limit and write in leading
order in 1/k,

�
�

G�r�
�,r����,k�f���d�


 −
1

k
�

−k�/2

k�/2

G�0,x�/k,k�f�x�/k�dx� 


−
1

k
�

−





G�0,x�/k,k�f�x�/k�dx�, �14�

thus integrating along a straight line in the direction of t̂�
�
centered at r�
�. It is now convenient to express the free

Green function in integral representation, which in two di-
mensions leads to

G�r,r�,k� = − lim
�→0

� dp2

4�2

eip·�r−r��

p2 − �k2 + i��
. �15�

Aligning the x axis with the tangential direction t̂�
� as in
Eq. �14� and integrating out the py component, one obtains

G�r,r�,k� =� dp

2�
eip�x−x��e

iq�y−y��

2iq
, �16�

with q=�k2− p2. Note that limy→0−
�y�G�r ,r���y�=0

=−�1/2���x−x�� revealing the singular behavior of the
Green function in this limit.

Next, we express the single-layer distributions on the
boundary in its Fourier components; that is,

f��� =� dpf̂�p�eip�, �17�

where we treat p to leading order as a continuous variable
neglecting the discreteness of p=2�j /LC, j�N due to the
finite length of the boundary C. From Eq. �16� together with
Eq. �14�, we obtain the short length contributions in the form

�
�

G�
,��f���d�



1

k
lim

y→0−

� dpdp�eip
eiq�y�

2iq
�

−



 dx

2�
ei�p−p��x/k f̂�p��

=� dp
f̂�p�
2iq

eip
. �18�

We proceed as above for the partial derivatives �11� by iden-
tifying the normal and tangential direction with the y and x
axis, respectively. Note again that the derivatives � /�y need
to be taken before completing the limit y→0− from below.
One obtains

�nn�
�

G�
,��f���d� = i� dpf̂�p�
q

2
eip
, �19�

�nt�
�

G�
,��f���d� = − i� dpf̂�p�
p

2
eip
, �20�

�tt�
�

G�
,��f���d� = i� dpf̂�p�
p2

2q
eip
. �21�

Turning to the contributions from long trajectories, we
again introduce the Green function on the boundary in terms
of its Fourier components,

G�
,�,kp/s� =� dpdp�Ĝp/s�p,p��ei�p
−p���, �22�

and write
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�
C/�

d�G�
,��f��� =� dpdp�Ĝ�p,p�� f̂�p��eip
.

Here, differentiation can be pulled under the integral sign
and by employing the asymptotic form �12� together with a
stationary phase approximation, one obtains in leading order

�nĜ�p,p�� = iqĜ�p,p��, �tĜ�p,p�� = ipĜ�p,p�� ,

and likewise,

�nnĜ�p,p�� = − q2Ĝ�p,p��, �tnĜ�p,p�� = − qpĜ�p,p�� ,

�ttĜ�p,p�� = − p2Ĝ�p,p�� .

Writing the boundary conditions �2� in terms of the Fourier

components ĝ�p�, ĥ�p�, and Gp/s�p , p��, one obtains the set of
equations

�M0 + MD̂�X̂ = 0 with X̂ = 	ĝ

ĥ

 , �23�

where M0 ,M contains contributions from short and long tra-
jectories, respectively, with

M0�p,p�� =
i

2�
1

qp
��kp

2 + 2�qp
2� − 2�p

− 2�p
�

qs
�p2 − qs

2� ���p,p�� ,

M�p,p�� =
i

2�
1

qp
��kp

2 + 2�qp
2� 2�p

2�p
�

qs
�p2 − qs

2� ���p,p�� ,

and

D̂�p,p�� = 2i	qpĜp�p,p�� 0

0 qsĜ
s�p,p��



= 2	�nĜp�p,p�� 0

0 �nĜs�p,p��

 .

The eigenfrequency condition for finite elastic bodies in two
dimensions can thus be cast into the form

det�I − T̂���� = 0 with T̂ = − M0
−1MD̂ , �24�

and

T̂�p,p�� =
1

4 det�M0��
�

qsqp
�p2 − qs

2���kp
2 + 2�qp

2� + 4�2p2 4�2p

qs
�p2 − qs

2�

4�p

qp
��kp

2 + 2�qp
2�

�

qsqp
�p2 − qs

2���kp
2 + 2�qp

2� + 4�2p2�D̂�p,p�� , �25�

as well as

det M0�p,p�� = −
1

4
� �

qsqp
�p2 − qs

2���kp
2 + 2�qp

2� − 4�2p2� .

�26�

The operator T̂ is the short wavelength approximation of a
wave propagator acting on boundary functions in Fourier or
momentum representation; it has the general form of a quan-
tum Poincaré map �17,20�, written here for the elastody-
namic case including mode conversion. The matrix elements

T̂pp� describe the evolution of pressure and shear waves
along “ray” trajectories starting on the boundary with tan-
gential momentum p� and hitting the boundary with tangen-
tial momentum p; note that the rays corresponding to two
different modes will in general start and end at different
points on the boundary �see Fig. 1�b��. The qp/s component is
the part of the wave vector kp/s normal to the interface and
we may set

pp/s = kp/s sin �p/s, qp/s = kp/s cos �p/s.

The tangential momentum p at the end points is the same for
both polarizations before and after impact with the boundary
and we obtain directly Snell’s law,

p = pp = kp sin �p = ks sin �s = ps. �27�

Using �=ks /kp=cp /cs and identities such as

�kp
2 + 2�qp

2 = �� + 2��kp
2 cos 2�s, p2 − qs

2 = − ks
2 cos 2�s,

we may write the prefactor matrix in the form

A = − M0
−1M = 	App Aps

Asp Ass

 , �28�

with

App = Ass =
sin 2�s sin 2�p − �2 cos2 2�s

sin 2�s sin 2�p + �2 cos2 2�s
,

Asp = �2 2 sin 2�s cos 2�s

sin 2�s sin 2�p + �2 cos2 2�s
,
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Aps = −
2 sin 2�p cos 2�s

sin 2�s sin 2�p + �2 cos2 2�s
. �29�

The matrix elements of A are up to a similarity transforma-
tion equivalent to the standard conversion factors for plane
shear or pressure waves at impact with a plain interface and
free boundary conditions �24�. Note that here we follow the
convention used throughout the paper; for example, Asp de-
notes the conversion amplitude between an incoming p wave
and an outgoing s wave.

Next, we express the transition matrix A in a slightly
different form using the transformation

a = K−1AK with K = 	�qp/qs�1/4 0

0 �qs/qp�1/4 
 , �30�

which leads to a unitary matrix a. The relations app
2 +asp

2 =1
=aps

2 +ass
2 reflect conservation of wave energy normal to the

surface in the presence of mode conversion �24�.

3. Asymptotic form of the boundary integral kernel
in position representation

It is often convenient to work with the boundary integral
kernel in position representation. The inverse Fourier trans-

formation of the operator T̂pp�=ApD̂pp� again taken in sta-
tionary phase approximation and employing the asymptotic
form of the free Green function �12�, yields

T�
,�� =
1

�2�iL
cos �0A�
,��	�kpeikpL 0

0 �kse
iksL


 .

�31�

The stationary phase condition picks out contributions from
shear and pressure waves traveling from � to 
 along rays of
length L intersecting the boundary at 
 with a common angle
�0 �see Fig. 1�a��. In contrast to the momentum representa-
tion considered earlier, rays leaving the end point 
 can do
so along three different directions with angles �0, �p, and �s.
A p-polarized wave, for example, may emerge from 
 at an
angle �0 or �p depending on whether the corresponding in-
coming wave was a p or s wave. We thus set �p��0 in App
and Asp and �s��0 in Aps and Ass in Eq. �29� with �p ,�s
given by Snell’s law �27�; note that this implies, for example,
that App�Ass in general. Rewriting the operator �31� in terms
of the �now in general nonunitary� transition matrix a, one
obtains

T�
,�� =
1

�2�iL
	 cos �0app �cos �0 cos �p/�aps

�� cos �0 cos �sasp cos �0ass



�	�kpeikpL 0

0 �kse
iksL


 , �32�

with

app =
sin 2�s sin 2�0 − �2 cos2 2�s

sin 2�s sin 2�0 + �2 cos2 2�s
,

aps = − �
2�sin 2�0 sin 2�p cos 2�0

sin 2�0 sin 2�p + �2 cos2 2�0
,

asp = �
2�sin 2�0 sin 2�s cos 2�s

sin 2�s sin 2�0 + �2 cos2 2�s
,

ass =
sin 2�0 sin 2�p − �2 cos2 2�0

sin 2�0 sin 2�p + �2 cos2 2�0
. �33�

For hyperbolic shapes, that is, for boundaries only admit-
ting isolated periodic geometric rays �including mode con-
version at the boundary�, standard arguments lead to a de-
scription of the traces of the operator T in terms of periodic
ray trajectories �17�. One obtains

Tr Tn = �
j

�n�

A je
iSj−i�j�/2, �34�

where the sum is over all periodic ray trajectories having n
reflections at the boundary with position and polarizations
���1

j , l1
j � , . . . , ��n

j , ln
j ��, where li

j =p or s is the polarization of
the ith segment of the periodic ray j leaving the boundary at
the point �i, i=1, . . . ,n. Furthermore, one has

Sj = �
i=1

n

kli
jLi

j, A j = A j
geo�

i=1

n

ali+1
j li

j �35�

taken along a periodic orbit; here Sj is the action of classical
mechanics and the amplitude A j separates into a geometric
part A j

geo containing information about the spreading of
nearby trajectories and a mode conversion loss factor. The
traces Tn contain all the information about the spectrum and
may be used to construct the density of states or express the
spectral determinant �24�.

The operator �32� can be written in a form more familiar
from semiclassical quantum mechanics. We note that the co-
sine terms in the amplitudes relate to ray angles before and
after hitting the boundary at 
; each contribution to the pe-
riodic orbit formula �34� thus contains products of cosine
terms along the periodic orbit. Following an argument by
Boasman �25� developed in the scalar case, we consider

�� �2L�
,��
���


� =�cos ��
 cos �
�

L
, �36�

with angles �
�=�0 taken at 
 and ��
 taken at �, respec-
tively �see Fig. 1�a��. The traces of the operators T as in Eq.

�32� and T̃ defined as

T̃�
,�� =
1

�2�i
�� �2L
�

���

�a�
,��	�kpeikpL
� 0

0 �kse
iksL
�



�37�

are thus equivalent to leading order. That is, when writing the
traces as a sum over periodic rays as in Eq. �34�, the cosine
terms coincide after multiplication along a periodic orbit.
Similarly, the extra �±1/2 terms in the off-diagonal terms in
Eq. �32� cancel after one period. This confirms the form of
the operator as postulated in Ref. �22� from which the trace
formula suggested by Couchman et al. �21� can be derived
by standard means as indicated earlier.
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III. CONCLUSION

We have derived an asymptotic form of the boundary in-
tegral kernel in 2D elastodynamics from which periodic orbit
trace formulas can be deduced using stationary phase argu-
ments. It is expected that a 3D version of the asymptotic
operator can be written in the form �37� using local coordi-
nates where the tangential direction lies in the plane spanned
by the vector r−r� and the normal at the boundary point r.

In deriving the 3D version of the operator �37� one is natu-
rally lead to a momentum representation in terms of spheri-
cal coordinates; the technical difficulties are not expected to
exceed those of the 3D quantum case as discussed in Refs.
�17,19,20�.
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